
Understanding DO-178C and Design Assurance Levels (DAL) 

Introduction 

In the world of aviation software development, safety is paramount. One of the most 
critical standards governing the development and certification of airborne software 
systems is DO-178C, formally titled Software Considerations in Airborne Systems and 
Equipment Certification. Published by RTCA (Radio Technical Commission for 
Aeronautics), DO-178C provides guidance for ensuring the safety, reliability, and 
airworthiness of software used in commercial and military aircraft. 

A crucial aspect of DO-178C is the classification of software into different Design 
Assurance Levels (DALs), which determine the rigor of the verification and validation 
processes required for certification. These levels reflect the severity of the consequences 
should the software fail. This paper explores the different DAL levels in DO-178C, their 
criteria, and their impact on aviation software development. 

Design Assurance Levels (DALs) in DO-178C 

Overview of DALs 

DO-178C defines five distinct Design Assurance Levels (DALs), labeled from DAL A to DAL 
E. These levels are assigned based on the potential effects of software failure on the 
aircraft and its occupants. The more severe the consequence, the stricter the requirements 
for software development, verification, and documentation. 

1. DAL A - Catastrophic Failure Condition 

2. DAL B - Hazardous/Severe-Major Failure Condition 

3. DAL C - Major Failure Condition 

4. DAL D - Minor Failure Condition 

5. DAL E - No Effect 

DAL A - Catastrophic 

Definition: A failure condition classified as catastrophic results in multiple fatalities, loss 
of the aircraft, or an otherwise irrecoverable situation. 

Impact: Software assigned DAL A must undergo the most stringent development and 
verification processes. The failure of this software cannot be tolerated under any 
circumstances. 

Key Requirements: 

Real Time Consulting

24 MAR 2025



• Highest level of testing and code coverage (Modified Condition/Decision Coverage - 
MC/DC) 

• Extensive documentation, traceability, and reviews 

• Formal methods and rigorous software verification 

• Structural coverage analysis at object code level 

Example: Flight control software, such as fly-by-wire systems, falls under DAL A since a 
failure could lead to a complete loss of control of the aircraft. 

DAL B - Hazardous/Severe-Major 

Definition: A failure condition classified as hazardous could lead to serious injuries, 
significant reduction in aircraft safety margins, or excessive crew workload. 

Impact: While less severe than DAL A, failures at DAL B could still have serious 
consequences, requiring strict compliance with DO-178C processes. 

Key Requirements: 

• High level of testing and code coverage (Decision Coverage) 

• Formal documentation and software verification 

• Structural coverage analysis at the source code level 

Example: Autopilot systems and alerting systems (e.g., Terrain Awareness and Warning 
Systems - TAWS) often fall under DAL B. 

DAL C - Major 

Definition: A major failure condition could lead to increased crew workload or 
inconvenience to passengers but would not pose a direct safety threat. 

Impact: DAL C failures do not lead to catastrophic consequences, but they must still be 
rigorously verified to ensure they do not contribute to a larger failure. 

Key Requirements: 

• Less stringent than DAL A and B but still requires rigorous testing (Statement 
Coverage) 

• Comprehensive verification and documentation 

• Software architecture and design reviews 

Real Time Consulting

24 MAR 2025



Example: Software for in-flight entertainment systems or non-critical monitoring systems 
typically falls under DAL C. 

DAL D - Minor 

Definition: A minor failure condition has negligible impact on aircraft operation and 
safety, potentially causing only minor inconvenience. 

Impact: DAL D software requires the least amount of verification among the safety-related 
categories. 

Key Requirements: 

• Basic software lifecycle processes 

• Statement coverage verification 

• Less stringent documentation and testing requirements 

Example: Non-essential cabin management systems, such as lighting controls, may be 
classified under DAL D. 

DAL E - No Effect 

Definition: A failure condition classified as no effect has no impact on aircraft operation, 
safety, or the pilot's workload. 

Impact: Software at DAL E does not require compliance with DO-178C beyond 
fundamental development processes. 

Key Requirements: 

• No formal certification required under DO-178C 

• Standard software development processes may still be followed 

Example: Passenger Wi-Fi systems and general cabin entertainment software are often 
categorized as DAL E. 

Importance of DAL Classification 

Assigning the correct DAL level is crucial for balancing safety and development costs. 
Over-classifying software as a higher DAL than necessary can lead to excessive resource 
consumption, while under-classifying can lead to unsafe conditions. DAL determination is 
typically performed through System Safety Assessment (SSA) and Functional Hazard 
Analysis (FHA), ensuring each software component is assigned an appropriate level based 
on its criticality. 

Real Time Consulting

24 MAR 2025



Compliance Challenges and Best Practices 

Compliance with DO-178C DAL requirements presents several challenges: 

• Rigorous Documentation: Higher DAL levels require exhaustive documentation 
and traceability. 

• Software Verification and Testing: MC/DC testing for DAL A software is particularly 
challenging. 

• Tool Qualification: Software development tools must often be qualified to ensure 
they do not introduce errors. 

To address these challenges, aviation software developers follow best practices such as: 

• Early DAL Assessment: Identifying DAL requirements early in the development 
cycle. 

• Automated Testing and Analysis: Utilizing automated tools to streamline 
verification. 

• Incremental Development: Following an iterative approach to ensure compliance 
at every stage. 

• Strong Configuration Management: Ensuring consistency across software updates 
and changes. 

Conclusion 

DO-178C and its associated Design Assurance Levels (DALs) serve as the backbone of 
airborne software certification, ensuring that aviation software meets the highest 
standards of safety and reliability. By categorizing software based on failure impact, DALs 
help guide the development and verification processes, balancing safety with efficiency. 

Understanding and applying DO-178C DAL levels correctly is essential for aircraft 
manufacturers, software developers, and certification authorities to ensure compliance 
and, ultimately, protect passengers and crew. As aviation technology advances, adherence 
to DO-178C remains a critical element in maintaining trust and safety in airborne software 
systems. 

 

 

 

Real Time Consulting

24 MAR 2025



Embedded Software Development 

Embedded software development is the process of designing and implementing software 
that runs on dedicated hardware systems. Unlike general-purpose software, embedded 
software is designed to perform specific functions within constrained environments such 
as microcontrollers, real-time operating systems (RTOS), and specialized hardware 
components. It plays a crucial role in a wide range of industries, including automotive, 
medical devices, consumer electronics, and industrial automation. 

A key characteristic of embedded software is its interaction with hardware. Developers 
must consider factors such as memory limitations, power consumption, and real-time 
performance. Because embedded systems often operate in safety-critical environments, 
reliability and efficiency are paramount. 

The development process typically involves requirements analysis, system design, coding, 
testing, and deployment. Programming languages like C, C++, and assembly are commonly 
used due to their efficiency and low-level hardware control. Tools such as integrated 
development environments (IDEs), debuggers, and simulators aid in development and 
testing. 

Challenges in embedded software development include optimizing performance within 
limited resources, ensuring real-time operation, and maintaining security. Best practices 
involve modular programming, rigorous testing, and adherence to industry standards. 

As technology advances, embedded software continues to evolve, integrating artificial 
intelligence, IoT connectivity, and advanced cybersecurity measures, expanding its role in 
modern innovation. 

 

Real Time Consulting

24 MAR 2025




